Internet Access Provider Hack-Howto Compendium

We all know that the web is full of wireless internet access provider, service, hardware hacks. But why can't you find a compendium of all the most useful tweaks and hacks? You can. You did.

Friday, September 15, 2006

DUN Hack any Cell Phone or Pocket PC in lessthan 64minutes

prerequisites:

a. laptop
b. cell phone reception
c. bluetooth between laptop and pocket pc
d. winmodem emulation software see: http://wireless-internet-access-provider.com
e. DUN Internet Access Provider Settings
f. device driver

64 Minutes to Get Online Using Your Pocket PC as your new Internet Access Provider

Ok, So I got tired of paying $12/h at a wifi internet cafe with no view when I'm paying $300 a night for my hotel room with a view but with no wifi. I normally have a EVDO Broadband Wireless Internet AirCard with me at all times but this time, I forgot to bring it. In fact, I'm not entirely sure where it is come to think of it. So with 2 pocket PCs in hand, the Cingular 8125 and the Audiovox ppc6700 from Verizon, I'm gunna get online over bluetooth.

I quickly found a RadioShack in Lahaina, Maui, Hawaii that has a cheap $39 bluetooth dongle. I installed it into my IBM thinkpad BUT decided to CLOCK myself using the the stopwatch on my $12 Timex. Afterall, I tell everyone how much of a hassle it is to use a PDA as a DUN (Dial Up Networking) Modem. So this looks like a perfect time to give it a whirl and see how long this process REALLY takes... below are the times in HOUR:MINUTES:SECONDS format and the details of what I did in that time...

0:00 sec walked into hotel at 1:04 pm
2:45 sec tore open bt case from local maui radioshack and plugged in my ibm thinkpad
3:31 sec started driver install from cd
5:18 sec inserted bluetooth dongle
6:43 sec walked over to the air conditioner to figure out why my room was 84 degrees with 90% humidity
7:52 sec restarting computer since the driver install wants me to
12:12 sec started sending off some sms text messages and forgot about this bluetooth project
14:11 sec successfully paired my cingular 8125 to thinkpad
16:39 sec I’m lost. It says connected but when I try to transfer files it tells me that no device was found
19:33 sec I lied. I went to my pda mydocuments folder and clicknheld a jpeg file then selected BEAM. It then took me to a page where I could choose INFRARED or OTHER. I hit other and the Bluetooth transfer started. Cool. Now I can download the drivers onto my 8125 and move them to the laptop for full install ok… embarking on phase two…
22:45 sec just realized that I don’t have all the needed files online. Argh. I’ll have to pause the clock and put them online before continuing so that you get a realistic install schedule. Argh.
24minutes went by. I decided to call the office and ask for help. They put the doc and drivers online at:

http://wireless-internet-access-provider.com

22:49 sec started the download over EDGE network NOT EVDO. But only took 3 min
25:04 sec ok. Found the document on my pda 8125 and started sending to my thinkpad 2,703,231bytes being sent.
34:40 sec finished transferring the file to my thinkpad, unzipped it and sent the #2 application BACK TO THE PDA.
40:04 sec this is the tricky part. The earlier part you just had to do basic stuff and the install CD for your bluetooth dongle pretty much carried you here. This is where you have to do some detailed configs… I’ll elaborate here.

This is what I did in the last 5 minutes above.
turn off EVDO or EDGE. The easiest way to do this is the turn ON FLIGHT MODE then turn it back off. This way your data connection is broken. You WANT a data connection broken so that you PHONE can be a DIAL UP MODEM (ahhhh!) – If you’re currenly online, which you had to be to download the software, you can't dial out.

Create a new Dial Up Networking Account. In XP go to Start > My Network Places – RIGHT MOUSE to select PROPERTIES > NETWORK TASKS / Create New Network Connection > NEXT > Connect To Network at my Work Place (dial up)

Then enter: *99# as the dial up number to call or if you are using a Verizon Cell PDA then enter #777

in the following screen enter WAP@CINGULARGPRS.com with password “cingular1” or enter your10digitphonenumber@vzw3g.com and vzw for the password in these fields

1:04:51 sec IM ONLINE NOW! answered a few phone calls and sent out some maui mms picture messages to jealous friends then remembered that I’m actually doing a project. So I’d say I threw about 15 minutes of fudge time into the equation here.

Personally, I find that step by step instructions just get me confused so let me give you a 15,000 foot Mt Kilauea Perspective in checklist format.

1. Make sure you can transfer files between your PDA and your computer. Via Bluetooth
Install WinModem Onto Your PPC

2. Make Sure that your Internet Connection Is DEAD. You wanna be able to make an outgoing dial up phone call.

3. Create a New DIAL UP Networking Account using the call in numbers and login/pw above on your laptop

4. realize that most bluetooth software will WIZARD you through this process so you’ve probably done #4 already without knowing it if you just installed the Bluetooth system.

5. Run Winmodem in Bluetooth Mode so that your phone is ready to accept a DIAL command from your Laptop quicklink: http://wireless-internet-access-provider.com

6. then go to START > Connect To > EVDO/EDGE DUN (Dial Up Networking) connection you setup in #4 above.

6.5 PS... if you have trouble reconnecting, just restart your Pocket PC. Your Bluetooth settings should stay put so you wont have to fiddle with it any more. Of couse, if you want better battery life, you really oughta turn OFF bluetooth when you're not using DUN.

7. If you have any questions askem at http://wireless-internet-coverage.com/forum for answers. Happy Traveling!

Bug Report: DIGG Chokes on LessThanGreaterThan Symbols

This is wierd. I just posted a blog item in Digg and the Preview came out just fine. But after the POST ANYWAYS screen, DIGG erased the rest of the words after the "<" sign! My title was, "HowTo In <64minutes Convert a Cell Phone into a Modem with DUN Hack
It ended up being: HowTo_In !

Grrr... now i gotta heavily mod the post and repost it!

Thursday, September 14, 2006

64minutes: Dial Up Networking DUN over Bluetooth Cingular 8125 Verizon Treo 700w 700p ppc6700 Pocket PC PDAs

moved...
http://internet-access-provider-hack.blogspot.com/2006/09/dun-hack-any-cell-phone-or-pocket-pc.html

HowTo Tripple WIFI Range and Power

This is probably the simplest tip you'll ever hear about increasing your WIFI range and power. We all know that the polarity of a typical wifi adapter card is vertical while the ap's all project horizontally. So we're NOT talking about tilting your laptop over. This tip is even simpler and MORE PRACTICAL than that. DIGG IT!

Take a look at my signal strength below...

Pretty Weak. Then with a simple 2 inch move, I got:

Here's how I Started off setting up... like most red blooded american people would... Any Guesses why this setup is bad? And don't tell me you gotta know where the AP origin is. The technique requires no knowledge of AP origins. But since you asked, the AP is above the PARASAILING Sign and about 15 feet deep behind 3 walls.

YES. Just slide your laptop over 2 inches so that the antenna element of your wifi adapter is NOT directly reflecting and oscillating on itself. In other words, drop the floor out of the table or in this case, garden wall, your laptop is sitting on. DIGG IT!

By simply letting your wifi card hover over the ground, you tripple your wifi reach and power. Try it out. tell us what you think at out forum: http://wireless-internet-coverage.com/forum/

DIGG IT!

Wednesday, September 13, 2006

Internet Access Provider Gypsy Hotspot - HowTo Stay At 4Star Hotels Free


How to Stay at Luxury Hotels and Resorts Free by Becoming an Internet Access Provider Gypsy Wifi Hotspot

I personally travel a lot. A lot is actually an understatement. I travel like most folks stay put. Today I'm across from the Banyan Tree in Lahaina, Maui, Hawaii. Yesterday, I was at the Princeville Hotel in Kauai. The 3 days before, I was in the Clift Hotel in SF where they serve the most kick ass leechee (I can spell this however I want, I'm asian and so is the original word!)martiniis.

In all this traveling, I've figured out a couple of things. 1. Never outcall a 6 foot tall "female" massage therapist to your room. 2. Never get drunk while your wallet is sitting on the bar (especially if the profile of a thick stack of $1oo bills is clearly visible). 3. People will PAY YOU CASH if you install a mobile wireless router with SSID, "8bucks-a-day-wifi-310-862-4250."

Yes, that's right. Your hotelling neighbors HATE typing in their credit card numbers into an auth screen that messes up their DHCP. So offer them an alternative. When they call you, tell them you only accept cash and give them a unique Login and PW. You can create up to 10 unique user accounts with an enterprise grade router called the TGMB8000.

Armed with an EVDO Verizon Wireless or Sprint Card, and a 3g Router, you are a mobile wifi hotspot purveyor. Yes, this violates your term of service. Yes, If Verizon caught you, they'd cancel your account. BUT nice part is that if they cancel YOUR account, no $175 termination fee!

In anycase, it's all natted so your evdo 3g internet access provider would know what you were up to. So you can just ignore the sentence above in blue.

Architecting Your Vacation Cash Cow

The trick to making this pay for your hotel room is to find a room with high wifi visibility. For maximum potential user base. Ummm. Let's do it this way, lemme create a bullet list here.

1. Get a room with COURTYARD visibility. (street or oceanfacing rooms have low wifi penetration range)
2. Stay at the nicest hotel you can find. The Ritzier your resort or hotel, the more likely there are going to be executives who need to get online.
3. Emphasize CASH. mobile execs HATE using credit cards. It's annoying.
4. Put your Phone number in the SSID NOT your ROOM Number. This is for obvious security and privacy reasons.
5. IF you'd rather accept a credit card so that a personal meeting is NOT required, then get a GOOGLE CHECKOUT or PAYPAL account with the BUYNOW button.
6. You can totally automate this process including the Login/PW disclosure if you build a website with a payment redirect option. It's really simple... User enters visa number then after you get paid, the payment gateway (paypal or checkout) just sends them to a page where the login/pw is listed OR
7. You can just have a gmail account setup with a vacation reply message containing the username login/pw. This way, after your account gets a payment, Gmail automatically sends your GYPSY User the un/pw.

You may not be able to cover your whole $750 Four Seasons Suite bill but it sure is nice to be able to slough off that $14 martinii bill passively. Go ahead, try it, it may not be a cash cow for you but even cash calves are nothing to sneeze at.

Written from the Lahaina Island Coffee Internet Cafe - because i didnt wanna walk back to the Hotel in 95% humidity.

Linux Driver Hack for EVDO kpc650 v620 v640 Verizon Sprint

So, we are at ToorCon (HACKER) Security Conference. I overhear a prolific mad scientist spewing out security vulnerabilities in Cingular Wireless, T-Mobile, and Sprint. He explains how you can get unlimited free calling minutes by spoofing cid or caller identification since the billing systems of these companies are not "L^KJ&FS*A#R" (Lance, what was the term that goes here?) enabled. And he goes on to explain how he can get complete bios on ANYBODY who calls him from a RESTRICTED NUMBER... So that he can know exactly who is calling before he talks to them.. WOW..

Anyways, Turns out he can do all this but can't get ONLINE! :o)

So, Since we had extra kpc650 EVDO AirCards, and since he had a linux machine, i figured, "givem the card, he'll make the driver himself." As you can see... It worked....

Note: To make the Novatel V620 Linux Driver, you will need 2 things,
1. this page.
2. product id and vendor id from this page: Novatel V620 Linux Driver
EVDO-Coverage.com Wireless Internet Consulting wrote:
> UMMM>.. WAIT!!! you did that at 2 AM?>????
>
> whats the code???!?!
Ok - so what you do is put this in your
/usr/src/linux/drivers/usb/serial/ directory
then you go to /usr/src/linux and make modules && make modules_install
then to load this up:
you have to do a lsusb and get the vendor/product id such as:
$lsusb
Bus 005 Device 002: ID 0c88:17da Kyocera Wireless Corp.
then modprobe your new usbserial module (rmmod any if they are already
loaded)
modprobe usbserial vendor=0xc88 product=0x17da maxSize=2048
then if it doesn't create /dev/ttyUSB0 and /dev/ttyUSB1 on it's own you do:
mknod /dev/ttyUSB0 c 188 0
mknod /dev/ttyUSB1 c 188 1
and then if pppd needs to be configured:
mknod /dev/ppp c 108 0
after that load up kppp
and basically you set up your modem to /dev/ttyUSB0
then the phone number is #777
login and pass is the same as windows so number@vzw3g.com and vzw as pass.
Hit dial and tada you are connected.
[edited for brevity]
>
> On 9/23/05, *Lance James* > wrote:
>
> Ok, I got the Kyocera working in linux.
>
> --
> Best Regards,
> Lance James
> Secure Science Corporation
> www.securescience.net
> Author of 'Phishing Exposed'
> http://www.securescience.net/amazon/
> Find out how malware is affecting your company: Get a DIA account
> today!
> https://slam.securescience.com/signup.cgi - it's free!
>
>
>
>
> --
> X-------------Alohaaaaaaaa-----------
> Robert Kim, Wireless Internet Consultant
> http://evdo-coverage.com
> 2611 S. Coast Highway 101 Suite 102
> Cardiff by the Sea, CA 92007
> 310 862 4250
>
> "We Eat Cubicles for Brunch(sm)"
> X-------------Shalommmmmmm-----------
--
- Hide quoted text -
Best Regards,
Lance James
Secure Science Corporation
www.securescience.net
Author of 'Phishing Exposed'
http://www.securescience.net/amazon/
Find out how malware is affecting your company: Get a DIA account today!
https://slam.securescience.com/signup.cgi - it's free!
/*Added Kyocera KCP650 support by Lance James and evdo-coverage.com w/ credit to junxion.com USB Serial Converter driver
*
* Copyright (C) 1999 - 2004 Greg Kroah-Hartman (gxxxxx@kroah.com) (we dont have permission to publish these e's)
* Copyright (C) 2000 Peter Berger (pxxxxx@brimson.com) (we dont have permission to publish these e's)
* Copyright (C) 2000 Al Borchers (bxxxxxx@steinerpoint.com) (we dont have permission to publish these e's)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version
* 2 as published by the Free Software Foundation.
*
* This driver was originally based on the ACM driver by Armin Fuerst (which was
* based on a driver by Brad Keryan)
*
* See Documentation/usb/usb-serial.txt for more information on using this driver
Wireless Internet EVDO KYOCERA kpc650 v650 Linux Driver
Written In Partnership by Lance James of SecureScience.net, Author of Phishing Exposed and EVDO-Coverage.com
*
* (12/10/2002) gkh
* Split the ports off into their own struct device, and added a
* usb-serial bus driver.
*
* (11/19/2002) gkh
* removed a few #ifdefs for the generic code and cleaned up the failure
* logic in initialization.
*
* (10/02/2002) gkh
* moved the console code to console.c and out of this file.
*
* (06/05/2002) gkh
* moved location of startup() call in serial_probe() until after all
* of the port information and endpoints are initialized. This makes
* things easier for some drivers.
*
* (04/10/2002) gkh
* added serial_read_proc function which creates a
* /proc/tty/driver/usb-serial file.
*
* (03/27/2002) gkh
* Got USB serial console code working properly and merged into the main
* version of the tree. Thanks to Randy Dunlap for the initial version
* of this code, and for pushing me to finish it up.
* The USB serial console works with any usb serial driver device.
*
* (03/21/2002) gkh
* Moved all manipulation of port->open_count into the core. Now the
* individual driver's open and close functions are called only when the
* first open() and last close() is called. Making the drivers a bit
* smaller and simpler.
* Fixed a bug if a driver didn't have the owner field set.
*
* (02/26/2002) gkh
* Moved all locking into the main serial_* functions, instead of having
* the individual drivers have to grab the port semaphore. This should
* reduce races.
* Reworked the MOD_INC logic a bit to always increment and decrement, even
* if the generic driver is being used.
*
* (10/10/2001) gkh
* usb_serial_disconnect() now sets the serial->dev pointer is to NULL to
* help prevent child drivers from accessing the device since it is now
* gone.
*
* (09/13/2001) gkh
* Moved generic driver initialize after we have registered with the USB
* core. Thanks to Randy Dunlap for pointing this problem out.
*
* (07/03/2001) gkh
* Fixed module paramater size. Thanks to John Brockmeyer for the pointer.
* Fixed vendor and product getting defined through the MODULE_PARM macro
* if the Generic driver wasn't compiled in.
* Fixed problem with generic_shutdown() not being called for drivers that
* don't have a shutdown() function.
*
* (06/06/2001) gkh
* added evil hack that is needed for the prolific pl2303 device due to the
* crazy way its endpoints are set up.
*
* (05/30/2001) gkh
* switched from using spinlock to a semaphore, which fixes lots of problems.
*
* (04/08/2001) gb
* Identify version on module load.
*
* 2001_02_05 gkh
* Fixed buffer overflows bug with the generic serial driver. Thanks to
* Todd Squires for fixing this.
*
* (01/10/2001) gkh
* Fixed bug where the generic serial adaptor grabbed _any_ device that was
* offered to it.
*
* (12/12/2000) gkh
* Removed MOD_INC and MOD_DEC from poll and disconnect functions, and
* moved them to the serial_open and serial_close functions.
* Also fixed bug with there not being a MOD_DEC for the generic driver
* (thanks to Gary Brubaker for finding this.)
*
* (11/29/2000) gkh
* Small NULL pointer initialization cleanup which saves a bit of disk image
*
* (11/01/2000) Adam J. Richter
* instead of using idVendor/idProduct pairs, usb serial drivers
* now identify their hardware interest with usb_device_id tables,
* which they usually have anyhow for use with MODULE_DEVICE_TABLE.
*
* (10/05/2000) gkh
* Fixed bug with urb->dev not being set properly, now that the usb
* core needs it.
*
* (09/11/2000) gkh
* Removed DEBUG #ifdefs with call to usb_serial_debug_data
*
* (08/28/2000) gkh
* Added port_lock to port structure.
* Added locks for SMP safeness to generic driver
* Fixed the ability to open a generic device's port more than once.
*
* (07/23/2000) gkh
* Added bulk_out_endpointAddress to port structure.
*
* (07/19/2000) gkh, pberger, and borchers
* Modifications to allow usb-serial drivers to be modules.
*
* (07/03/2000) gkh
* Added more debugging to serial_ioctl call
*
* (06/25/2000) gkh
* Changed generic_write_bulk_callback to not call wake_up_interruptible
* directly, but to have port_softint do it at a safer time.
*
* (06/23/2000) gkh
* Cleaned up debugging statements in a quest to find UHCI timeout bug.
*
* (05/22/2000) gkh
* Changed the makefile, enabling the big CONFIG_USB_SERIAL_SOMTHING to be
* removed from the individual device source files.
*
* (05/03/2000) gkh
* Added the Digi Acceleport driver from Al Borchers and Peter Berger.
*
* (05/02/2000) gkh
* Changed devfs and tty register code to work properly now. This was based on
* the ACM driver changes by Vojtech Pavlik.
*
* (04/27/2000) Ryan VanderBijl
* Put calls to *_paranoia_checks into one function.
*
* (04/23/2000) gkh
* Fixed bug that Randy Dunlap found for Generic devices with no bulk out ports.
* Moved when the startup code printed out the devices that are supported.
*
* (04/19/2000) gkh
* Added driver for ZyXEL omni.net lcd plus ISDN TA
* Made startup info message specify which drivers were compiled in.
*
* (04/03/2000) gkh
* Changed the probe process to remove the module unload races.
* Changed where the tty layer gets initialized to have devfs work nicer.
* Added initial devfs support.
*
* (03/26/2000) gkh
* Split driver up into device specific pieces.
*
* (03/19/2000) gkh
* Fixed oops that could happen when device was removed while a program
* was talking to the device.
* Removed the static urbs and now all urbs are created and destroyed
* dynamically.
* Reworked the internal interface. Now everything is based on the
* usb_serial_port structure instead of the larger usb_serial structure.
* This fixes the bug that a multiport device could not have more than
* one port open at one time.
*
* (03/17/2000) gkh
* Added config option for debugging messages.
* Added patch for keyspan pda from Brian Warner.
*
* (03/06/2000) gkh
* Added the keyspan pda code from Brian Warner
* Moved a bunch of the port specific stuff into its own structure. This
* is in anticipation of the true multiport devices (there's a bug if you
* try to access more than one port of any multiport device right now)
*
* (02/21/2000) gkh
* Made it so that any serial devices only have to specify which functions
* they want to overload from the generic function calls (great,
* inheritance in C, in a driver, just what I wanted...)
* Added support for set_termios and ioctl function calls. No drivers take
* advantage of this yet.
* Removed the #ifdef MODULE, now there is no module specific code.
* Cleaned up a few comments in usb-serial.h that were wrong (thanks again
* to Miles Lott).
* Small fix to get_free_serial.
*
* (02/14/2000) gkh
* Removed the Belkin and Peracom functionality from the driver due to
* the lack of support from the vendor, and me not wanting people to
* accidenatly buy the device, expecting it to work with Linux.
* Added read_bulk_callback and write_bulk_callback to the type structure
* for the needs of the FTDI and WhiteHEAT driver.
* Changed all reverences to FTDI to FTDI_SIO at the request of Bill
* Ryder.
* Changed the output urb size back to the max endpoint size to make
* the ftdi_sio driver have it easier, and due to the fact that it didn't
* really increase the speed any.
*
* (02/11/2000) gkh
* Added VISOR_FUNCTION_CONSOLE to the visor startup function. This was a
* patch from Miles Lott (milos@insync.net).
* Fixed bug with not restoring the minor range that a device grabs, if
* the startup function fails (thanks Miles for finding this).
*
* (02/05/2000) gkh
* Added initial framework for the Keyspan PDA serial converter so that
* Brian Warner has a place to put his code.
* Made the ezusb specific functions generic enough that different
* devices can use them (whiteheat and keyspan_pda both need them).
* Split out a whole bunch of structure and other stuff to a separate
* usb-serial.h file.
* Made the Visor connection messages a little more understandable, now
* that Miles Lott (milos@insync.net) has gotten the Generic channel to
* work. Also made them always show up in the log file.
*
* (01/25/2000) gkh
* Added initial framework for FTDI serial converter so that Bill Ryder
* has a place to put his code.
* Added the vendor specific info from Handspring. Now we can print out
* informational debug messages as well as understand what is happening.
*
* (01/23/2000) gkh
* Fixed problem of crash when trying to open a port that didn't have a
* device assigned to it. Made the minor node finding a little smarter,
* now it looks to find a continuous space for the new device.
*
* (01/21/2000) gkh
* Fixed bug in visor_startup with patch from Miles Lott (milos@insync.net)
* Fixed get_serial_by_minor which was all messed up for multi port
* devices. Fixed multi port problem for generic devices. Now the number
* of ports is determined by the number of bulk out endpoints for the
* generic device.
*
* (01/19/2000) gkh
* Removed lots of cruft that was around from the old (pre urb) driver
* interface.
* Made the serial_table dynamic. This should save lots of memory when
* the number of minor nodes goes up to 256.
* Added initial support for devices that have more than one port.
* Added more debugging comments for the Visor, and added a needed
* set_configuration call.
*
* (01/17/2000) gkh
* Fixed the WhiteHEAT firmware (my processing tool had a bug)
* and added new debug loader firmware for it.
* Removed the put_char function as it isn't really needed.
* Added visor startup commands as found by the Win98 dump.
*
* (01/13/2000) gkh
* Fixed the vendor id for the generic driver to the one I meant it to be.
*
* (01/12/2000) gkh
* Forget the version numbering...that's pretty useless...
* Made the driver able to be compiled so that the user can select which
* converter they want to use. This allows people who only want the Visor
* support to not pay the memory size price of the WhiteHEAT.
* Fixed bug where the generic driver (idVendor=0000 and idProduct=0000)
* grabbed the root hub. Not good.
*
* version 0.4.0 (01/10/2000) gkh
* Added whiteheat.h containing the firmware for the ConnectTech WhiteHEAT
* device. Added startup function to allow firmware to be downloaded to
* a device if it needs to be.
* Added firmware download logic to the WhiteHEAT device.
* Started to add #defines to split up the different drivers for potential
* configuration option.
*
* version 0.3.1 (12/30/99) gkh
* Fixed problems with urb for bulk out.
* Added initial support for multiple sets of endpoints. This enables
* the Handspring Visor to be attached successfully. Only the first
* bulk in / bulk out endpoint pair is being used right now.
*
* version 0.3.0 (12/27/99) gkh
* Added initial support for the Handspring Visor based on a patch from
* Miles Lott (milos@sneety.insync.net)
* Cleaned up the code a bunch and converted over to using urbs only.
*
* version 0.2.3 (12/21/99) gkh
* Added initial support for the Connect Tech WhiteHEAT converter.
* Incremented the number of ports in expectation of getting the
* WhiteHEAT to work properly (4 ports per connection).
* Added notification on insertion and removal of what port the
* device is/was connected to (and what kind of device it was).
*
* version 0.2.2 (12/16/99) gkh
* Changed major number to the new allocated number. We're legal now!
*
* version 0.2.1 (12/14/99) gkh
* Fixed bug that happens when device node is opened when there isn't a
* device attached to it. Thanks to marek@webdesign.no for noticing this.
*
* version 0.2.0 (11/10/99) gkh
* Split up internals to make it easier to add different types of serial
* converters to the code.
* Added a "generic" driver that gets it's vendor and product id
* from when the module is loaded. Thanks to David E. Nelson (dnelson@jump.net)
* for the idea and sample code (from the usb scanner driver.)
* Cleared up any licensing questions by releasing it under the GNU GPL.
*
* version 0.1.2 (10/25/99) gkh
* Fixed bug in detecting device.
*
* version 0.1.1 (10/05/99) gkh
* Changed the major number to not conflict with anything else.
*
* version 0.1 (09/28/99) gkh
* Can recognize the two different devices and start up a read from
* device when asked to. Writes also work. No control signals yet, this
* all is vendor specific data (i.e. no spec), also no control for
* different baud rates or other bit settings.
* Currently we are using the same devid as the acm driver. This needs
* to change.
*
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "usb-serial.h"
#include "pl2303.h"
/*
* Version Information
*/
#define DRIVER_VERSION "v2.0"
#define DRIVER_AUTHOR "Greg Kroah-Hartman, greg@kroah.com, http://www.kroah.com/linux/"
#define DRIVER_DESC "USB Serial Driver core"
/* Driver structure we register with the USB core */
static struct usb_driver usb_serial_driver = {
.owner = THIS_MODULE,
.name = "usbserial",
.probe = usb_serial_probe,
.disconnect = usb_serial_disconnect,
};
/* There is no MODULE_DEVICE_TABLE for usbserial.c. Instead
the MODULE_DEVICE_TABLE declarations in each serial driver
cause the "hotplug" program to pull in whatever module is necessary
via modprobe, and modprobe will load usbserial because the serial
drivers depend on it.
*/
static ushort maxSize=0;
static int debug;
static struct usb_serial *serial_table[SERIAL_TTY_MINORS]; /* initially all NULL */
static LIST_HEAD(usb_serial_driver_list);
struct usb_serial *usb_serial_get_by_index(unsigned index)
{
struct usb_serial *serial = serial_table[index];
if (serial)
kref_get(&serial->kref);
return serial;
}
static struct usb_serial *get_free_serial (struct usb_serial *serial, int num_ports, unsigned int *minor)
{
unsigned int i, j;
int good_spot;
dbg("%s %d", __FUNCTION__, num_ports);
*minor = 0;
for (i = 0; i < good_spot =" 1;" j =" 1;">= SERIAL_TTY_MINORS) (serial_table[i+j])) {
good_spot = 0;
i += j;
break;
}
if (good_spot == 0)
continue;
*minor = i;
dbg("%s - minor base = %d", __FUNCTION__, *minor);
for (i = *minor; (i < (*minor + num_ports)) && (i < serial ="=" i =" 0;">num_ports; ++i) {
serial_table[serial->minor + i] = NULL;
}
}
static void destroy_serial(struct kref *kref)
{
struct usb_serial *serial;
struct usb_serial_port *port;
int i;
serial = to_usb_serial(kref);
dbg ("%s - %s", __FUNCTION__, serial->type->name);
serial->type->shutdown(serial);
/* return the minor range that this device had */
return_serial(serial);
for (i = 0; i <>num_ports; ++i)
serial->port[i]->open_count = 0;
/* the ports are cleaned up and released in port_release() */
for (i = 0; i <>num_ports; ++i)
if (serial->port[i]->dev.parent != NULL) {
device_unregister(&serial->port[i]->dev);
serial->port[i] = NULL;
}
/* If this is a "fake" port, we have to clean it up here, as it will
* not get cleaned up in port_release() as it was never registered with
* the driver core */
if (serial->num_ports <>num_port_pointers) {
for (i = serial->num_ports; i <>num_port_pointers; ++i) {
port = serial->port[i];
if (!port)
continue;
usb_kill_urb(port->read_urb);
usb_free_urb(port->read_urb);
usb_kill_urb(port->write_urb);
usb_free_urb(port->write_urb);
usb_kill_urb(port->interrupt_in_urb);
usb_free_urb(port->interrupt_in_urb);
usb_kill_urb(port->interrupt_out_urb);
usb_free_urb(port->interrupt_out_urb);
kfree(port->bulk_in_buffer);
kfree(port->bulk_out_buffer);
kfree(port->interrupt_in_buffer);
kfree(port->interrupt_out_buffer);
}
}
usb_put_dev(serial->dev);
/* free up any memory that we allocated */
kfree (serial);
}
/**********************************
* Driver tty interface functions
********************************** /
static int serial_open (struct tty_struct *tty, struct file * filp)
{
struct usb_serial *serial;
struct usb_serial_port *port;
unsigned int portNumber;
int retval;
dbg("%s", __FUNCTION__);
/* get the serial object associated with this tty pointer */
serial = usb_serial_get_by_index(tty->index);
if (!serial) {
tty->driver_data = NULL;
return -ENODEV;
}
portNumber = tty->index - serial->minor;
port = serial->port[portNumber];
++port->open_count;
if (port->open_count == 1) {
/* set up our port structure making the tty driver
* remember our port object, and us it */
tty->driver_data = port;
port->tty = tty;
/* lock this module before we call it
* this may fail, which means we must bail out,
* safe because we are called with BKL held */
if (!try_module_get(serial->type->owner)) {
retval = -ENODEV;
goto bailout_kref_put;
}
/* only call the device specific open if this
* is the first time the port is opened */
retval = serial->type->open(port, filp);
if (retval)
goto bailout_module_put;
}
return 0;
bailout_module_put:
module_put(serial->type->owner);
bailout_kref_put:
kref_put(&serial->kref, destroy_serial);
port->open_count = 0;
return retval;
}
static void serial_close(struct tty_struct *tty, struct file * filp)
{
struct usb_serial_port *port = (struct usb_serial_port *) tty->driver_data;
if (!port)
return;
dbg("%s - port %d", __FUNCTION__, port->number);
if (port->open_count == 0)
return;
--port->open_count;
if (port->open_count == 0) {
/* only call the device specific close if this
* port is being closed by the last owner */
port->serial->type->close(port, filp);
if (port->tty) {
if (port->tty->driver_data)
port->tty->driver_data = NULL;
port->tty = NULL;
}
module_put(port->serial->type->owner);
}
kref_put(&port->serial->kref, destroy_serial);
}
static int serial_write (struct tty_struct * tty, const unsigned char *buf, int count)
{
struct usb_serial_port *port = (struct usb_serial_port *) tty->driver_data;
int retval = -EINVAL;
dbg("%s - port %d, %d byte(s)", __FUNCTION__, port->number, count);
if (!port->open_count) {
dbg("%s - port not opened", __FUNCTION__);
goto exit;
}
/* pass on to the driver specific version of this function */
retval = port->serial->type->write(port, buf, count);
exit:
return retval;
}
static int serial_write_room (struct tty_struct *tty)
{
struct usb_serial_port *port = (struct usb_serial_port *) tty->driver_data;
int retval = -EINVAL;
dbg("%s - port %d", __FUNCTION__, port->number);
if (!port->open_count) {
dbg("%s - port not open", __FUNCTION__);
goto exit;
}
/* pass on to the driver specific version of this function */
retval = port->serial->type->write_room(port);
exit:
return retval;
}
static int serial_chars_in_buffer (struct tty_struct *tty)
{
struct usb_serial_port *port = (struct usb_serial_port *) tty->driver_data;
int retval = -EINVAL;
dbg("%s = port %d", __FUNCTION__, port->number);
if (!port->open_count) {
dbg("%s - port not open", __FUNCTION__);
goto exit;
}
/* pass on to the driver specific version of this function */
retval = port->serial->type->chars_in_buffer(port);
exit:
return retval;
}
static void serial_throttle (struct tty_struct * tty)
{
struct usb_serial_port *port = (struct usb_serial_port *) tty->driver_data;
dbg("%s - port %d", __FUNCTION__, port->number);
if (!port->open_count) {
dbg ("%s - port not open", __FUNCTION__);
return;
}
/* pass on to the driver specific version of this function */
if (port->serial->type->throttle)
port->serial->type->throttle(port);
}
static void serial_unthrottle (struct tty_struct * tty)
{
struct usb_serial_port *port = (struct usb_serial_port *) tty->driver_data;
dbg("%s - port %d", __FUNCTION__, port->number);
if (!port->open_count) {
dbg("%s - port not open", __FUNCTION__);
return;
}
/* pass on to the driver specific version of this function */
if (port->serial->type->unthrottle)
port->serial->type->unthrottle(port);
}
static int serial_ioctl (struct tty_struct *tty, struct file * file, unsigned int cmd, unsigned long arg)
{
struct usb_serial_port *port = (struct usb_serial_port *) tty->driver_data;
int retval = -ENODEV;
dbg("%s - port %d, cmd 0x%.4x", __FUNCTION__, port->number, cmd);
if (!port->open_count) {
dbg ("%s - port not open", __FUNCTION__);
goto exit;
}
/* pass on to the driver specific version of this function if it is available */
if (port->serial->type->ioctl)
retval = port->serial->type->ioctl(port, file, cmd, arg);
else
retval = -ENOIOCTLCMD;
exit:
return retval;
}
static void serial_set_termios (struct tty_struct *tty, struct termios * old)
{
struct usb_serial_port *port = (struct usb_serial_port *) tty->driver_data;
dbg("%s - port %d", __FUNCTION__, port->number);
if (!port->open_count) {
dbg("%s - port not open", __FUNCTION__);
return;
}
/* pass on to the driver specific version of this function if it is available */
if (port->serial->type->set_termios)
port->serial->type->set_termios(port, old);
}
static void serial_break (struct tty_struct *tty, int break_state)
{
struct usb_serial_port *port = (struct usb_serial_port *) tty->driver_data;
dbg("%s - port %d", __FUNCTION__, port->number);
if (!port->open_count) {
dbg("%s - port not open", __FUNCTION__);
return;
}
/* pass on to the driver specific version of this function if it is available */
if (port->serial->type->break_ctl)
port->serial->type->break_ctl(port, break_state);
}
static int serial_read_proc (char *page, char **start, off_t off, int count, int *eof, void *data)
{
struct usb_serial *serial;
int length = 0;
int i;
off_t begin = 0;
char tmp[40];
dbg("%s", __FUNCTION__);
length += sprintf (page, "usbserinfo:1.0 driver:%s\n", DRIVER_VERSION);
for (i = 0; i < serial =" usb_serial_get_by_index(i);" serial ="=">type->owner)
length += sprintf (page+length, " module:%s", module_name(serial->type->owner));
length += sprintf (page+length, " name:\"%s\"", serial->type->name);
length += sprintf (page+length, " vendor:%04x product:%04x",
le16_to_cpu(serial->dev->descriptor.idVendor),
le16_to_cpu(serial->dev->descriptor.idProduct));
length += sprintf (page+length, " num_ports:%d", serial->num_ports);
length += sprintf (page+length, " port:%d", i - serial->minor + 1);
usb_make_path(serial->dev, tmp, sizeof(tmp));
length += sprintf (page+length, " path:%s", tmp);
length += sprintf (page+length, "\n");
if ((length + begin) > (off + count))
goto done;
if ((length + begin) < length =" 0;">kref, destroy_serial);
}
*eof = 1;
done:
if (off >= (length + begin))
return 0;
*start = page + (off-begin);
return ((count < port =" (struct">driver_data;
dbg("%s - port %d", __FUNCTION__, port->number);
if (!port->open_count) {
dbg("%s - port not open", __FUNCTION__);
goto exit;
}
if (port->serial->type->tiocmget)
return port->serial->type->tiocmget(port, file);
exit:
return -EINVAL;
}
static int serial_tiocmset (struct tty_struct *tty, struct file *file,
unsigned int set, unsigned int clear)
{
struct usb_serial_port *port = (struct usb_serial_port *) tty->driver_data;
dbg("%s - port %d", __FUNCTION__, port->number);
if (!port->open_count) {
dbg("%s - port not open", __FUNCTION__);
goto exit;
}
if (port->serial->type->tiocmset)
return port->serial->type->tiocmset(port, file, set, clear);
exit:
return -EINVAL;
}
void usb_serial_port_softint(void *private)
{
struct usb_serial_port *port = (struct usb_serial_port *)private;
struct tty_struct *tty;
dbg("%s - port %d", __FUNCTION__, port->number);
if (!port)
return;
tty = port->tty;
if (!tty)
return;
tty_wakeup(tty);
}
static void port_release(struct device *dev)
{
struct usb_serial_port *port = to_usb_serial_port(dev);
dbg ("%s - %s", __FUNCTION__, dev->bus_id);
usb_kill_urb(port->read_urb);
usb_free_urb(port->read_urb);
usb_kill_urb(port->write_urb);
usb_free_urb(port->write_urb);
usb_kill_urb(port->interrupt_in_urb);
usb_free_urb(port->interrupt_in_urb);
usb_kill_urb(port->interrupt_out_urb);
usb_free_urb(port->interrupt_out_urb);
kfree(port->bulk_in_buffer);
kfree(port->bulk_out_buffer);
kfree(port->interrupt_in_buffer);
kfree(port->interrupt_out_buffer);
kfree(port);
}
static struct usb_serial * create_serial (struct usb_device *dev,
struct usb_interface *interface,
struct usb_serial_device_type *type)
{
struct usb_serial *serial;
serial = kmalloc (sizeof (*serial), GFP_KERNEL);
if (!serial) {
dev_err(&dev->dev, "%s - out of memory\n", __FUNCTION__);
return NULL;
}
memset (serial, 0, sizeof(*serial));
serial->dev = usb_get_dev(dev);
serial->type = type;
serial->interface = interface;
kref_init(&serial->kref);
return serial;
}
static struct usb_serial_device_type *search_serial_device(struct usb_interface *iface)
{
struct list_head *p;
const struct usb_device_id *id;
struct usb_serial_device_type *t;
/* List trough know devices and see if the usb id matches */
list_for_each(p, &usb_serial_driver_list) {
t = list_entry(p, struct usb_serial_device_type, driver_list);
id = usb_match_id(iface, t->id_table);
if (id != NULL) {
dbg("descriptor matches");
return t;
}
}
return NULL;
}
int usb_serial_probe(struct usb_interface *interface,
const struct usb_device_id *id)
{
struct usb_device *dev = interface_to_usbdev (interface);
struct usb_serial *serial = NULL;
struct usb_serial_port *port;
struct usb_host_interface *iface_desc;
struct usb_endpoint_descriptor *endpoint;
struct usb_endpoint_descriptor *interrupt_in_endpoint[MAX_NUM_PORTS];
struct usb_endpoint_descriptor *interrupt_out_endpoint[MAX_NUM_PORTS];
struct usb_endpoint_descriptor *bulk_in_endpoint[MAX_NUM_PORTS];
struct usb_endpoint_descriptor *bulk_out_endpoint[MAX_NUM_PORTS];
struct usb_serial_device_type *type = NULL;
int retval;
int minor;
int buffer_size;
int i;
int num_interrupt_in = 0;
int num_interrupt_out = 0;
int num_bulk_in = 0;
int num_bulk_out = 0;
int num_ports = 0;
int max_endpoints;
type = search_serial_device(interface);
if (!type) {
dbg("none matched");
return -ENODEV;
}
serial = create_serial (dev, interface, type);
if (!serial) {
dev_err(&interface->dev, "%s - out of memory\n", __FUNCTION__);
return -ENOMEM;
}
/* if this device type has a probe function, call it */
if (type->probe) {
const struct usb_device_id *id;
if (!try_module_get(type->owner)) {
dev_err(&interface->dev, "module get failed, exiting\n");
kfree (serial);
return -EIO;
}
id = usb_match_id(interface, type->id_table);
retval = type->probe(serial, id);
module_put(type->owner);
if (retval) {
dbg ("sub driver rejected device");
kfree (serial);
return retval;
}
}
/* descriptor matches, let's find the endpoints needed */
/* check out the endpoints */
iface_desc = interface->cur_altsetting;
for (i = 0; i <>desc.bNumEndpoints; ++i) {
endpoint = &iface_desc->endpoint[i].desc;
if ((endpoint->bEndpointAddress & 0x80) &&
((endpoint->bmAttributes &amp; 3) == 0x02)) {
/* we found a bulk in endpoint */
dbg("found bulk in on endpoint %d", i);
bulk_in_endpoint[num_bulk_in] = endpoint;
++num_bulk_in;
}
if (((endpoint->bEndpointAddress & 0x80) == 0x00) &&
((endpoint->bmAttributes &amp; 3) == 0x02)) {
/* we found a bulk out endpoint */
dbg("found bulk out on endpoint %d", i);
bulk_out_endpoint[num_bulk_out] = endpoint;
++num_bulk_out;
}
if ((endpoint->bEndpointAddress & 0x80) &&
((endpoint->bmAttributes &amp; 3) == 0x03)) {
/* we found a interrupt in endpoint */
dbg("found interrupt in on endpoint %d", i);
interrupt_in_endpoint[num_interrupt_in] = endpoint;
++num_interrupt_in;
}
if (((endpoint->bEndpointAddress & 0x80) == 0x00) &&
((endpoint->bmAttributes &amp; 3) == 0x03)) {
/* we found an interrupt out endpoint */
dbg("found interrupt out on endpoint %d", i);
interrupt_out_endpoint[num_interrupt_out] = endpoint;
++num_interrupt_out;
}
}
#if defined(CONFIG_USB_SERIAL_PL2303) defined(CONFIG_USB_SERIAL_PL2303_MODULE)
/* BEGIN HORRIBLE HACK FOR PL2303 */
/* this is needed due to the looney way its endpoints are set up */
if (((le16_to_cpu(dev->descriptor.idVendor) == PL2303_VENDOR_ID) &&
(le16_to_cpu(dev->descriptor.idProduct) == PL2303_PRODUCT_ID))
((le16_to_cpu(dev->descriptor.idVendor) == ATEN_VENDOR_ID) &&
(le16_to_cpu(dev->descriptor.idProduct) == ATEN_PRODUCT_ID))) {
if (interface != dev->actconfig->interface[0]) {
/* check out the endpoints of the other interface*/
iface_desc = dev->actconfig->interface[0]->cur_altsetting;
for (i = 0; i <>desc.bNumEndpoints; ++i) {
endpoint = &iface_desc->endpoint[i].desc;
if ((endpoint->bEndpointAddress & 0x80) &&
((endpoint->bmAttributes & 3) == 0x03)) {
/* we found a interrupt in endpoint */
dbg("found interrupt in for Prolific device on separate interface");
interrupt_in_endpoint[num_interrupt_in] = endpoint;
++num_interrupt_in;
}
}
}
/* Now make sure the PL-2303 is configured correctly.
* If not, give up now and hope this hack will work
* properly during a later invocation of usb_serial_probe
*/
if (num_bulk_in == 0 num_bulk_out == 0) {
dev_info(&interface->dev, "PL-2303 hack: descriptors matched but endpoints did not\n");
kfree (serial);
return -ENODEV;
}
}
/* END HORRIBLE HACK FOR PL2303 */
#endif
/* found all that we need */
dev_info(&interface->dev, "%s converter detected\n", type->name);
#ifdef CONFIG_USB_SERIAL_GENERIC
if (type == &usb_serial_generic_device) {
num_ports = num_bulk_out;
if (num_ports == 0) {
dev_err(&interface->dev, "Generic device with no bulk out, not allowed.\n");
kfree (serial);
return -EIO;
}
}
#endif
if (!num_ports) {
/* if this device type has a calc_num_ports function, call it */
if (type->calc_num_ports) {
if (!try_module_get(type->owner)) {
dev_err(&interface->dev, "module get failed, exiting\n");
kfree (serial);
return -EIO;
}
num_ports = type->calc_num_ports (serial);
module_put(type->owner);
}
if (!num_ports)
num_ports = type->num_ports;
}
if (get_free_serial (serial, num_ports, &minor) == NULL) {
dev_err(&interface->dev, "No more free serial devices\n");
kfree (serial);
return -ENOMEM;
}
serial->minor = minor;
serial->num_ports = num_ports;
serial->num_bulk_in = num_bulk_in;
serial->num_bulk_out = num_bulk_out;
serial->num_interrupt_in = num_interrupt_in;
serial->num_interrupt_out = num_interrupt_out;
/* create our ports, we need as many as the max endpoints */
/* we don't use num_ports here cauz some devices have more endpoint pairs than ports */
max_endpoints = max(num_bulk_in, num_bulk_out);
max_endpoints = max(max_endpoints, num_interrupt_in);
max_endpoints = max(max_endpoints, num_interrupt_out);
max_endpoints = max(max_endpoints, (int)serial->num_ports);
serial->num_port_pointers = max_endpoints;
dbg("%s - setting up %d port structures for this device", __FUNCTION__, max_endpoints);
for (i = 0; i < port =" kmalloc(sizeof(struct">number = i + serial->minor;
port->serial = serial;
spin_lock_init(&port->lock);
INIT_WORK(&port->work, usb_serial_port_softint, port);
serial->port[i] = port;
}
/* set up the endpoint information */
for (i = 0; i < endpoint =" bulk_in_endpoint[i];" port =" serial-">port[i];
port->read_urb = usb_alloc_urb (0, GFP_KERNEL);
if (!port->read_urb) {
dev_err(&interface->dev, "No free urbs available\n");
goto probe_error;
}
buffer_size=(endpoint->wMaxPacketSize > maxSize)?endpoint->wMaxPacketSize:maxSize;
port->bulk_in_size = buffer_size;
port->bulk_in_endpointAddress = endpoint->bEndpointAddress;
port->bulk_in_buffer = kmalloc (buffer_size, GFP_KERNEL);
if (!port->bulk_in_buffer) {
dev_err(&interface->dev, "Couldn't allocate bulk_in_buffer\n");
goto probe_error;
}
usb_fill_bulk_urb (port->read_urb, dev,
usb_rcvbulkpipe (dev,
endpoint->bEndpointAddress),
port->bulk_in_buffer, buffer_size,
serial->type->read_bulk_callback,
port);
}
for (i = 0; i < endpoint =" bulk_out_endpoint[i];" port =" serial-">port[i];
port->write_urb = usb_alloc_urb(0, GFP_KERNEL);
if (!port->write_urb) {
dev_err(&interface->dev, "No free urbs available\n");
goto probe_error;
}
buffer_size = le16_to_cpu(endpoint->wMaxPacketSize);
port->bulk_out_size = buffer_size;
port->bulk_out_endpointAddress = endpoint->bEndpointAddress;
port->bulk_out_buffer = kmalloc (buffer_size, GFP_KERNEL);
if (!port->bulk_out_buffer) {
dev_err(&interface->dev, "Couldn't allocate bulk_out_buffer\n");
goto probe_error;
}
usb_fill_bulk_urb (port->write_urb, dev,
usb_sndbulkpipe (dev,
endpoint->bEndpointAddress),
port->bulk_out_buffer, buffer_size,
serial->type->write_bulk_callback,
port);
}
if (serial->type->read_int_callback) {
for (i = 0; i < endpoint =" interrupt_in_endpoint[i];" port =" serial-">port[i];
port->interrupt_in_urb = usb_alloc_urb(0, GFP_KERNEL);
if (!port->interrupt_in_urb) {
dev_err(&interface->dev, "No free urbs available\n");
goto probe_error;
}
buffer_size = le16_to_cpu(endpoint->wMaxPacketSize);
port->interrupt_in_endpointAddress = endpoint->bEndpointAddress;
port->interrupt_in_buffer = kmalloc (buffer_size, GFP_KERNEL);
if (!port->interrupt_in_buffer) {
dev_err(&interface->dev, "Couldn't allocate interrupt_in_buffer\n");
goto probe_error;
}
usb_fill_int_urb (port->interrupt_in_urb, dev,
usb_rcvintpipe (dev,
endpoint->bEndpointAddress),
port->interrupt_in_buffer, buffer_size,
serial->type->read_int_callback, port,
endpoint->bInterval);
}
} else if (num_interrupt_in) {
dbg("the device claims to support interrupt in transfers, but read_int_callback is not defined");
}
if (serial->type->write_int_callback) {
for (i = 0; i < endpoint =" interrupt_out_endpoint[i];" port =" serial-">port[i];
port->interrupt_out_urb = usb_alloc_urb(0, GFP_KERNEL);
if (!port->interrupt_out_urb) {
dev_err(&interface->dev, "No free urbs available\n");
goto probe_error;
}
buffer_size = le16_to_cpu(endpoint->wMaxPacketSize);
port->interrupt_out_size = buffer_size;
port->interrupt_out_endpointAddress = endpoint->bEndpointAddress;
port->interrupt_out_buffer = kmalloc (buffer_size, GFP_KERNEL);
if (!port->interrupt_out_buffer) {
dev_err(&interface->dev, "Couldn't allocate interrupt_out_buffer\n");
goto probe_error;
}
usb_fill_int_urb (port->interrupt_out_urb, dev,
usb_sndintpipe (dev,
endpoint->bEndpointAddress),
port->interrupt_out_buffer, buffer_size,
serial->type->write_int_callback, port,
endpoint->bInterval);
}
} else if (num_interrupt_out) {
dbg("the device claims to support interrupt out transfers, but write_int_callback is not defined");
}
/* if this device type has an attach function, call it */
if (type->attach) {
if (!try_module_get(type->owner)) {
dev_err(&interface->dev, "module get failed, exiting\n");
goto probe_error;
}
retval = type->attach (serial);
module_put(type->owner);
if (retval <> 0) {
/* quietly accept this device, but don't bind to a serial port
* as it's about to disappear */
goto exit;
}
}
/* register all of the individual ports with the driver core */
for (i = 0; i < port =" serial-">port[i];
port->dev.parent = &interface->dev;
port->dev.driver = NULL;
port->dev.bus = &usb_serial_bus_type;
port->dev.release = &port_release;
snprintf (&port->dev.bus_id[0], sizeof(port->dev.bus_id), "ttyUSB%d", port->number);
dbg ("%s - registering %s", __FUNCTION__, port->dev.bus_id);
device_register (&port->dev);
}
usb_serial_console_init (debug, minor);
exit:
/* success */
usb_set_intfdata (interface, serial);
return 0;
probe_error:
for (i = 0; i < port =" serial-">port[i];
if (!port)
continue;
if (port->read_urb)
usb_free_urb (port->read_urb);
kfree(port->bulk_in_buffer);
}
for (i = 0; i < port =" serial-">port[i];
if (!port)
continue;
if (port->write_urb)
usb_free_urb (port->write_urb);
kfree(port->bulk_out_buffer);
}
for (i = 0; i < port =" serial-">port[i];
if (!port)
continue;
if (port->interrupt_in_urb)
usb_free_urb (port->interrupt_in_urb);
kfree(port->interrupt_in_buffer);
}
for (i = 0; i < port =" serial-">port[i];
if (!port)
continue;
if (port->interrupt_out_urb)
usb_free_urb (port->interrupt_out_urb);
kfree(port->interrupt_out_buffer);
}
/* return the minor range that this device had */
return_serial (serial);
/* free up any memory that we allocated */
for (i = 0; i <>num_port_pointers; ++i)
kfree(serial->port[i]);
kfree (serial);
return -EIO;
}
void usb_serial_disconnect(struct usb_interface *interface)
{
int i;
struct usb_serial *serial = usb_get_intfdata (interface);
struct device *dev = &interface->dev;
struct usb_serial_port *port;
dbg ("%s", __FUNCTION__);
usb_set_intfdata (interface, NULL);
if (serial) {
for (i = 0; i <>num_ports; ++i) {
port = serial->port[i];
if (port &&amp; port->tty)
tty_hangup(port->tty);
}
/* let the last holder of this object
* cause it to be cleaned up */
kref_put(&serial->kref, destroy_serial);
}
dev_info(dev, "device disconnected\n");
}
static struct tty_operations serial_ops = {
.open = serial_open,
.close = serial_close,
.write = serial_write,
.write_room = serial_write_room,
.ioctl = serial_ioctl,
.set_termios = serial_set_termios,
.throttle = serial_throttle,
.unthrottle = serial_unthrottle,
.break_ctl = serial_break,
.chars_in_buffer = serial_chars_in_buffer,
.read_proc = serial_read_proc,
.tiocmget = serial_tiocmget,
.tiocmset = serial_tiocmset,
};
struct tty_driver *usb_serial_tty_driver;
static int __init usb_serial_init(void)
{
int i;
int result;
usb_serial_tty_driver = alloc_tty_driver(SERIAL_TTY_MINORS);
if (!usb_serial_tty_driver)
return -ENOMEM;
/* Initialize our global data */
for (i = 0; i < result =" bus_register(&usb_serial_bus_type);">owner = THIS_MODULE;
usb_serial_tty_driver->driver_name = "usbserial";
usb_serial_tty_driver->devfs_name = "usb/tts/";
usb_serial_tty_driver->name = "ttyUSB";
usb_serial_tty_driver->major = SERIAL_TTY_MAJOR;
usb_serial_tty_driver->minor_start = 0;
usb_serial_tty_driver->type = TTY_DRIVER_TYPE_SERIAL;
usb_serial_tty_driver->subtype = SERIAL_TYPE_NORMAL;
usb_serial_tty_driver->flags = TTY_DRIVER_REAL_RAW TTY_DRIVER_NO_DEVFS;
usb_serial_tty_driver->init_termios = tty_std_termios;
usb_serial_tty_driver->init_termios.c_cflag = B9600 CS8 CREAD HUPCL CLOCAL;
tty_set_operations(usb_serial_tty_driver, &serial_ops);
result = tty_register_driver(usb_serial_tty_driver);
if (result) {
err("%s - tty_register_driver failed", __FUNCTION__);
goto exit_reg_driver;
}
/* register the USB driver */
result = usb_register(&usb_serial_driver);
if (result < result =" usb_serial_generic_register(debug);">function) { type->function = usb_serial_generic_##function; dbg("Had to override the " #function " usb serial operation with the generic one.");} } while (0)
static void fixup_generic(struct usb_serial_device_type *device)
{
set_to_generic_if_null(device, open);
set_to_generic_if_null(device, write);
set_to_generic_if_null(device, close);
set_to_generic_if_null(device, write_room);
set_to_generic_if_null(device, chars_in_buffer);
set_to_generic_if_null(device, read_bulk_callback);
set_to_generic_if_null(device, write_bulk_callback);
set_to_generic_if_null(device, shutdown);
}
int usb_serial_register(struct usb_serial_device_type *new_device)
{
int retval;
fixup_generic(new_device);
/* Add this device to our list of devices */
list_add(&new_device->driver_list, &usb_serial_driver_list);
retval = usb_serial_bus_register(new_device);
if (retval) {
err("problem %d when registering driver %s", retval, new_device->name);
list_del(&new_device->driver_list);
}
else
info("USB Serial support registered for %s", new_device->name);
return retval;
}
void usb_serial_deregister(struct usb_serial_device_type *device)
{
info("USB Serial deregistering driver %s", device->name);
list_del(&device->driver_list);
usb_serial_bus_deregister(device);
}
/* If the usb-serial core is built into the core, the usb-serial drivers
need these symbols to load properly as modules. */
EXPORT_SYMBOL_GPL(usb_serial_register);
EXPORT_SYMBOL_GPL(usb_serial_deregister);
EXPORT_SYMBOL_GPL(usb_serial_probe);
EXPORT_SYMBOL_GPL(usb_serial_disconnect);
EXPORT_SYMBOL_GPL(usb_serial_port_softint);
/* Module information */
MODULE_AUTHOR( DRIVER_AUTHOR );
MODULE_DESCRIPTION( DRIVER_DESC );
MODULE_VERSION( DRIVER_VERSION );
MODULE_LICENSE("GPL");
module_param(debug, bool, S_IRUGO S_IWUSR);
MODULE_PARM_DESC(debug, "Debug enabled or not");
module_param(maxSize, ushort, 0);
MODULE_PARM_DESC(maxSize, "User specified USB endpoint size");
For Expert Network Security Consulting, Contact
Lance James,
ToorCon Speaker and
Author of "Phishing Exposed"
at http://SecureScience.net
For EVDO Wireless Internet Service, Products and Consulting, Contact http://evdo-coverage.com